Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.724
Filtrar
1.
Methods Mol Biol ; 2797: 351-362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570472

RESUMO

KRAS mutations occur in approximately ~50% of colorectal cancers (CRCs) and are associated with poor prognosis and resistance to therapy. While these most common mutations found at amino acids G12, G13, Q61, and A146 have long been considered oncogenic drivers of CRC, emerging clinical data suggest that each mutation may possess different biological functions, resulting in varying consequences in oncogenesis. Currently, the mechanistic underpinnings associated with each allelic variation remain unclear. Elucidating the unique effectors of each KRAS mutant could both increase the understanding of KRAS biology and provide a basis for allele-specific therapeutic opportunities. Biotinylation identification (BioID) is a method to label and identify proteins located in proximity of a protein of interest. These proteins are captured through the strong interaction between the biotin label and streptavidin bead and subsequently identified by mass spectrometry. Here, we developed a protocol using CRISPR-mediated gene editing to generate endogenous BioID2-tagged KrasG12D and KrasG12V isogenic murine colon epithelial cell lines to identify unique protein proximity partners by BioID.


Assuntos
Genes ras , Proteínas Proto-Oncogênicas p21(ras) , Animais , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Alelos , Biotina/química , Estreptavidina , Mutação
2.
ACS Appl Mater Interfaces ; 16(14): 17300-17312, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557010

RESUMO

Early secretory antigenic target-6 (ESAT-6) is regarded as the most immunogenic protein produced by Mycobacterium tuberculosis, whose detection is of great clinical significance for tuberculosis diagnosis. However, the detection of the ESAT-6 antigen has been hampered by the expensive cost and complex experimental procedures, resulting in low sensitivity. Herein, we developed a titanium carbide (Ti3C2Tx)-based aptasensor for ESAT-6 detection utilizing a triple-signal amplification strategy. First, acetylene black (AB) was immobilized on Ti3C2Tx through a cross-linking reaction to form the Ti3C2Tx-AB-PAn nanocomposite. Meanwhile, AB served as a conductive bridge, and Ti3C2Tx can synergistically promote the electron transfer of PAn. Ti3C2Tx-AB-PAn exhibited outstanding conductivity, high electrochemical signals, and abundant sites for the loading of ESAT-6 binding aptamer II (EBA II) to form a novel signal tag. Second, N-CNTs were adsorbed on NiMn layered double hydride (NiMn LDH) nanoflowers to obtain NiMn LDH/N-CNTs, exhibiting excellent conductivity and preeminent stability to be used as electrode modification materials. Third, the biotinylated EBA (EBA I) was immobilized onto a streptavidin-coated sensing interface, forming an amplification platform for further signal enhancement. More importantly, as a result of the synergistic effect of the triple-signal amplification platform, the aptasensor exhibited a wide detection linear range from 10 fg mL-1 to 100 ng mL-1 and a detection limit of 4.07 fg mL-1 for ESAT-6. We envision that our aptasensor provides a way for the detection of ESAT-6 to assist in the diagnosis of tuberculosis.


Assuntos
Compostos de Anilina , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Mycobacterium tuberculosis , Tuberculose , Humanos , Acetileno , Adsorção , Limite de Detecção , Titânio , Tuberculose/diagnóstico , Estreptavidina , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos
3.
ACS Sens ; 9(3): 1458-1464, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38446423

RESUMO

The evolution of drug resistance to many antimalarial drugs in the lethal strain of malaria (Plasmodium falciparum) has been a great concern over the past 50 years. Among these drugs, artemisinin has become less effective for treating malaria. Indeed, several P. falciparum variants have become resistant to this drug, as elucidated by specific mutations in the pfK13 gene. This study presents the development of a diagnostic kit for the detection of a common point mutation in the pfK13 gene of P. falciparum, namely, the C580Y point mutation. FIT-PNAs (forced-intercalation peptide nucleic acid) are DNA mimics that serve as RNA sensors that fluoresce upon hybridization to their complementary RNA. Herein, FIT-PNAs were designed to sense the C580Y single nucleotide polymorphism (SNP) and were conjugated to biotin in order to bind these molecules to streptavidin-coated plates. Initial studies with synthetic RNA were conducted to optimize the sensing system. In addition, cyclopentane-modified PNA monomers (cpPNAs) were introduced to improve FIT-PNA sensing. Lastly, total RNA was isolated from red blood cells infected with P. falciparum (WT strain - NF54-WT or mutant strain - NF54-C580Y). Streptavidin plates loaded with either FIT-PNA or cpFIT-PNA were incubated with the total RNA. A significant difference in fluorescence for mutant vs WT total RNA was found only for the cpFIT-PNA probe. In summary, this study paves the way for a simple diagnostic kit for monitoring artemisinin drug resistance that may be easily adapted to malaria endemic regions.


Assuntos
Artemisininas , Malária Falciparum , Ácidos Nucleicos Peptídicos , Humanos , Plasmodium falciparum/genética , Estreptavidina , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/farmacologia , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Resistência a Medicamentos/genética , RNA
4.
Sci Rep ; 14(1): 7319, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538635

RESUMO

Compared to other infectious diseases, for which LFT development can take years, SARS-CoV-2 antigen LFTS were developed and deployed within months. LFTS for antigen detection were adopted on an unprecedented scale during the COVID-19 pandemic, but many of them lack the sensitivity especially for samples with low viral load. In our previous work, we developed an enhanced signal strip for detection of SARS CoV-2 SI antigens in saliva. Here we introduce some modification to improve the sensitivity, and specificity, and to lower the cost of the strip, by using biotin streptavidin (BS) system. In the modified BS strip, gold-streptavidin and biotinylated Nanobodies (Nbs) against S1 antigen were externally mixed with the tested samples (saliva or nasopharyngeal swab) before their application on the sample pad of the test strip containing angiotensin converting enzyme (ACE-2), as the capturing probe. The study included 320 individuals, with 180 being positively confirmed by RT-PCR and 140 confirmed negative, as well as, 45 health care workers, who were responsible for screening and handling of surgical cases in General Surgery Department and COVID clinic of TBRI. Our results proved that modified BS strip improved the overall sensitivity and specificity of S1antigen detection in saliva samples (95.21% and 99.29% respectively) compared to our previously developed enhanced LFTS (91.66% and 98.57% respectively). Also, the sensitivity of cases with Ct ≤ 30, Ct ≤ 35, and Ct ≤ 40 using the modified BS strip showed higher values (98.54%, 95.38%, and 88.89% respectively), compared to the corresponding results of our previously developed enhanced LFTS (95.86%, 92.31%, and 82.22% respectively). There were no cross-reactions with either Middle East respiratory syndrome corona virus MERS-CoV or SARS-CoV antigens. Furthermore, we found that the lower viral detection limit (LVD) of BS strip was obviously lower than our previous LVD limit of the enhanced LFTS (0.2 × 104 copies/ml vs. 0.4 × 104 copies/ml, respectively). Our developed BS strip showed that saliva samples gave better results than nasopharyngeal swabs of the same patients. The fact of using smaller amounts of Nbs, and ACE2, as well as the dispensing off of conjugate pad when applying BS strip modifications, justified the expected reduction in the costs of the strip. The implementation of BS strips on saliva samples of 45 health co-workers, who were tested 4 and 6 days after exposure to infection, showed an increase in the sensitivity, starting from the 4th day and reaching its highest level on the 6th day in both high risk and paramedic groups (90.9%, and 80.0%, respectively). This study provides evidence that employment of the modified BS system could increase the sensitivity of the strips, lower their cost, and render them an effective screening tool for early detection of the virus in saliva of suspected Covid-19 patients.


Assuntos
Biotina , COVID-19 , Proteínas de Neoplasias , Humanos , Estreptavidina , SARS-CoV-2 , Pandemias , Saliva , COVID-19/diagnóstico , Antígenos Virais , Nasofaringe , Manejo de Espécimes
5.
J Proteome Res ; 23(4): 1531-1543, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38507741

RESUMO

Proximity-dependent biotinylation (PDB) techniques provide information about the molecular neighborhood of a protein of interest, yielding insights into its function and localization. Here, we assessed how different labeling enzymes and streptavidin resins influence PDB results. We compared the high-confidence interactors of the DNA/RNA-binding protein transactive response DNA-binding protein 43 kDa (TDP-43) identified using either miniTurbo (biotin ligase) or APEX2 (peroxidase) enzymes. We also evaluated two commercial affinity resins for purification of biotinylated proteins: conventional streptavidin sepharose versus a new trypsin-resistant streptavidin conjugated to magnetic resin, which significantly reduces the level of contamination by streptavidin peptides following on-bead trypsin digestion. Downstream analyses involved liquid chromatography coupled to mass spectrometry in data-dependent acquisition mode, database searching, and statistical analysis of high-confidence interactors using SAINTexpress. The APEX2-TDP-43 experiment identified more interactors than miniTurbo-TDP-43, although miniTurbo provided greater overlap with previously documented TDP-43 interactors. Purifications on sepharose resin yielded more interactors than magnetic resin in small-scale experiments using a range of magnetic resin volumes. We suggest that resin-specific background protein binding profiles and different lysate-to-resin ratios cumulatively affect the distributions of prey protein abundance in experimental and control samples, which impact statistical confidence scores. Overall, we highlight key experimental variables to consider for the empirical optimization of PDB experiments.


Assuntos
Biotina , Proteínas de Ligação a DNA , Biotinilação , Estreptavidina/química , Sefarose , Tripsina , Biotina/química
6.
Chem Commun (Camb) ; 60(27): 3697-3700, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38477080

RESUMO

We introduce a biotinylated D-amino acid probe capable of metabolically incorporating into bacterial PG. Leveraging the robust affinity between biotin and streptavidin, the probe has demonstrated efficacy in imaging, capture, and targeted inactivation of Gram-positive bacteria through synergistic pairings with commercially available streptavidin-modified fluorescent dyes and nanomaterials. The versatility of the probe is underscored by its compatibility with a variety of commercially available streptavidin-modified reagents. This adaptability allows the probe to be applied across diverse scenarios by integrating with these commercial reagents.


Assuntos
Bactérias , Biotina , Estreptavidina/química , Biotina/química , Bactérias/metabolismo , Corantes Fluorescentes/química , Bactérias Gram-Positivas/metabolismo
7.
ACS Sens ; 9(3): 1602-1610, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38451864

RESUMO

Solid-state (SS-) nanopore sensing has gained tremendous attention in recent years, but it has been constrained by its intrinsic lack of selectivity. To address this, we previously established a novel SS-nanopore assay that produces translocation signals only when a target biotinylated nucleic acid fragment binds to monovalent streptavidin (MS), a protein variant with a single high-affinity biotin-binding domain. While this approach has enabled selective quantification of diverse nucleic acid biomarkers, sensitivity enhancements are needed to improve the detection of low-abundance translational targets. Because the translocation dynamics that determine assay efficacy are largely governed by constituent charge characteristics, we here incorporate a polyhistidine-tagged MS (hMS) to alter the component detectability. We investigate the effects of buffer pH, salt concentration, and SS-nanopore diameter on the performance with the alternate reagent, achieve significant improvements in measurement sensitivity and selectivity, and expand the range of device dimensions viable for the assay. We used this improvement to detect as little as 1 nM miRNA spiked into human plasma. Overall, our findings improve the potential for broader applications of SS-nanopores in the quantitative analyses of molecular biomarkers.


Assuntos
Histidina , Nanoporos , Ácidos Nucleicos , Humanos , Estreptavidina/química , Biomarcadores
8.
J Immunol Methods ; 527: 113648, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38373541

RESUMO

Tumor necrosis factor-alpha, TNF-α, a cytokine recognized as a key regulator of inflammatory responses, is primarily produced by activated monocytes and macrophages. Measuring TNF-α levels serves as a valuable indicator for tracking several diseases and pathological states. Gold nanotechnology has been identified as a highly effective catalyst with unique properties for measuring inflammatory cytokines. This study aimed to synthesize gold nanoclusters (AuNCs) and the AuNCs-streptavidin system, along with their characterizations and spherical morphology. The detection of TNF-α antigen with AuNCs was determined, and a new immunoassay-based AuNCs analytical platform was studied. In this study, it was demonstrated that the synthesized AuNCs and AuNCs-streptavidin showed a bright-yellow appearance with absorption peaks at A600 and A610 nm, respectively. The approximately spherical shape was observed by TEM analysis. The AuNCs demonstrated a sensitivity limit for the detection of the TNF-α antigen, with a linear dose-dependent detection range of less than 1.25 ng/mL. The products of the band sizes and band intensities were proportional to the amount of TNF-α in the range of ∼80 kDa, ∼55 kDa, and âˆ¼ 25 kDa in western blot analysis. The TNF-α in cell lysate was successfully detected using an immunoassay after the activation of RAW264.7 cells with lipopolysaccharide (LPS). This assay may serve as a viable alternative for TNF-α detection with high speed, sensitivity, and qualities, ensuring its broad applications.


Assuntos
Nanopartículas Metálicas , Fator de Necrose Tumoral alfa , Ouro , Estreptavidina , Imunoensaio , Citocinas
9.
Talanta ; 272: 125777, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364565

RESUMO

Tyramine signal amplification (TSA) has made its mark in immunoassay due to its excellent signal amplification ability and short reaction time, but its application in nucleic acid detection is still very limited. Herein, an ultrasensitive microRNA (miRNA) biosensor by coupling hybridization-initiated exonuclease I (Exo I) protection and TSA strategy was established. Target miRNA is complementarily hybridized to the biotin-modified DNA probe to form a double strand, which protects the DNA probe from Exo I hydrolysis. Subsequently, horseradish peroxidase (HRP) is attached to the duplex via the biotin-streptavidin reaction and catalyzes the deposition of large amounts of biotin-tyramine in the presence of hydrogen peroxide (H2O2), followed by the conjugation of signal molecule streptavidin-phycoerythrin (SA-PE), which generates an intense fluorescence signal upon laser excitation. This method gave broad linearity in the range of 0.1 fM - 10 pM, yielding a detection limit as low as 74 aM. An increase in sensitivity of 4 orders of magnitude was observed compared to the miRNA detection without TSA amplification. This biosensor was successfully applied to the determination of miR-21 in breast cancer cells and human serum. By further design of specific DNA probes and coupling with the Luminex xMAP technology, it could be easily extended to multiplex miRNA assay, which possesses great application potential in clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Exodesoxirribonucleases , MicroRNAs , Humanos , MicroRNAs/genética , Biotina , Estreptavidina , Peróxido de Hidrogênio , Técnicas Biossensoriais/métodos , Sondas de DNA/genética , Tiramina , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico/métodos
10.
Nano Lett ; 24(9): 2821-2830, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407052

RESUMO

Single-virus tracking provides a powerful tool for studying virus infection with high spatiotemporal resolution. Quantum dots (QDs) are used to label and track viral particles due to their brightness and photostability. However, labeling viral particles with QDs is not easy. We developed a new method for labeling viral particles with QDs by using the Strep-tag II/streptavidin system. In this method, QDs were site-specifically ligated to viral proteins in live cells and then packaged into viral-like particles (VLPs) of tick-borne encephalitis virus (TBEV) and Ebola virus during viral assembly. With TBEV VLP-QDs, we tracked the clathrin-mediated endocytic entry of TBEV and studied its intracellular dynamics at the single-particle level. Our Strep-tag II/streptavidin labeling procedure eliminates the need for BirA protein expression or biotin addition, providing a simple and general method for site-specifically labeling viral particles with QDs for single-virus tracking.


Assuntos
Oligopeptídeos , Pontos Quânticos , Vírus , Estreptavidina , Vírion
11.
Anal Methods ; 16(10): 1546-1553, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38404205

RESUMO

The compound 3-phenoxybenzoic acid (3-PBA) is frequently utilized as a biomarker to detect exposure to various pyrethroids. In this study, a bivalent nanobody (Nb2) specifically targeting 3-PBA was biotinylated and immobilized onto streptavidin (SA)-modified bacterial magnetic nanoparticles (BMPs), resulting in the formation of BMP-SA-Biotin-Nb2 complexes. These complexes demonstrated remarkable stability when exposed to strongly acidic solutions (4 M HCl), methanol (80%), and high ionic strength (1.37 M NaCl). An immunoassay was subsequently developed utilizing BMP-SA-Biotin-Nb2 as the capture agent and 3-PBA-horseradish peroxidase as the detection probe. The immunoassay exhibited an IC50 value (half-maximum signal inhibition concentration) of 1.11 ng mL-1 for 3-PBA. To evaluate the accuracy of the assay, spiked sheep and cow urine samples (ranging from 3.0 to 240 ng mL-1) were analyzed. The quantitative recoveries ranged from 82.5% to 113.1%, which agreed well with the findings obtained using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Overall, the BMP-SA-Biotin-Nb2-based immunoassay holds great promise for rapid monitoring of 3-PBA following acid dissociation.


Assuntos
Benzoatos , Biotina , Magnetossomos , Feminino , Bovinos , Animais , Ovinos , Estreptavidina/química , Biotina/química , Ensaio de Imunoadsorção Enzimática/métodos , Cromatografia Líquida , Espectrometria de Massas em Tandem
12.
J Am Chem Soc ; 146(8): 5118-5127, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38363821

RESUMO

Using functional proteins for therapeutic purposes due to their high selectivity and/or catalytic properties can enable the control of various cellular processes; however, the transport of active proteins inside living cells remains a major challenge. In contrast, intracellular delivery of nucleic acids has become a routine method for a number of applications in gene therapy, genome editing, or immunization. Here we report a functionalizable platform constituting of DNA-protein nanogel carriers cross-linked through streptavidin-biotin or streptactin-biotin interactions and demonstrate its applicability for intracellular delivery of active proteins. We show that the nanogels can be loaded with proteins bearing either biotin, streptavidin, or strep-tag, and the resulting functionalized nanogels can be delivered into living cells after complexation with cationic lipid vectors. We use this approach for delivery of alkaline phosphatase enzyme, which is shown to keep its catalytic activity after internalization by mouse melanoma B16 cells, as demonstrated by the DDAO-phosphate assay. The resulting functionalized nanogels have dimensions on the order of 100 nm, contain around 100 enzyme molecules, and are shown to be transfectable at low lipid concentrations (charge ratio R± = 0.75). This ensures the low toxicity of our system, which in combination with high local enzyme concentration (∼100 µM) underlines potential interest of this nanoplatform for biomedical applications.


Assuntos
Biotina , Polietilenoglicóis , Animais , Camundongos , Nanogéis , Estreptavidina , Proteínas , DNA/metabolismo , Lipídeos , Portadores de Fármacos
13.
J Chromatogr A ; 1719: 464699, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38382212

RESUMO

Aptamers have shown great promise as oligonucleotide-based affinity ligands for various medicinal and industrial applications. A critical step in the production of DNA aptamers via selective enhancement of ligands by exponential enrichment (SELEX) is the generation of ssDNA from dsDNA. There are a number of caveats associated with current methods for ssDNA generation, which can lower success rates of SELEX experiments. They often result in low yields thereby decreasing diversity or fail to eliminate parasitic PCR by-products leading to accumulation of by-products from round to round. Both contribute to the failure of SELEX protocols and therefore potentially limit the impact of aptamers compared to their peptide-based antibody counterparts. We have developed a novel method using ion pair reversed phase HPLC (IP RP HPLC) employed under denaturing conditions for the ssDNA re-generation stage of SELEX following PCR. We have utilised a range of 5' chemical modifications on PCR primers to amplify PCR fragments prior to separation and purification of the DNA strands using denaturing IP RP HPLC. We have optimised mobile phases to enable complete denaturation of the dsDNA at moderate temperatures that circumvents the requirement of high temperatures and results in separation of the ssDNA based on differences in their hydrophobicity. Validation of the ssDNA isolation and purity assessment was performed by interfacing the IP RP HPLC with mass spectrometry and fluorescence-based detection. The results show that using a 5' Texas Red modification on the reverse primer in the PCR stage enabled purification of the ssDNA from its complimentary strand via IP RP HPLC under denaturing conditions. Additionally, we have confirmed the purity of the ssDNA generated as well as the complete denaturation of the PCR product via the use of mass-spectrometry and fluorescence analysis therefore proving the selective elimination of PCR by-products and the unwanted complementary strand. Following lyophilisation, ssDNA yields of up to 80% were obtained. In comparison the streptavidin biotin affinity chromatography also generates pure ssDNA with a yield of 55%. The application of this method to rapidly generate and purify ssDNA of the correct size, offers the opportunity to improve the development of new aptamers via SELEX.


Assuntos
Aptâmeros de Nucleotídeos , Técnica de Seleção de Aptâmeros , Cromatografia Líquida de Alta Pressão , Técnica de Seleção de Aptâmeros/métodos , DNA de Cadeia Simples , Estreptavidina/química , Estreptavidina/genética , Biotina/química , Biotina/genética , Biotina/metabolismo , Aptâmeros de Nucleotídeos/química
14.
Inorg Chem ; 63(10): 4604-4613, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38395777

RESUMO

Nontoxic, highly sensitive InP quantum dot (QD) fluorescent immunoassay probes are promising biomedical detection modalities due to their unique properties. However, InP-based QDs are prone to surface oxidation, and the stability of InP QD-based probes in biocompatible environments remains a crucial challenge. Although the thick shell can provide some protection during the phase transfer process of hydrophobic QDs, the photoluminescence quantum yield (PLQY) is generally decreased because of the contradiction between lattice stress relaxation and thick shell growth. Herein, we developed thick-shell InP-based core/shell QDs by inserting a ZnSeS alloy layer. The ternary ZnSeS intermediate shell could effectively facilitate lattice stress relaxation and passivate the defect states. The synthesized InP/ZnSe/ZnSeS/ZnS core/alloy shell/shell QDs (CAS-InP QDs) with nanostructure tailoring revealed a larger size, high PLQY (90%), and high optical stability. After amphiphilic polymer encapsulation, the aqueous CAS-InP QDs presented almost constant fluorescence attenuation and stable PL intensity under different temperatures, UV radiation, and pH solutions. The CAS-InP QDs were excellent labels of the fluorescence-linked immunosorbent assay (FLISA) for detecting C-reactive protein (CRP). The biotin-streptavidin (Bio-SA) system was first introduced in the FLISA to further improve the sensitivity, and the CAS-InP QDs-based SA-Bio sandwich FLISA realized the detection of CRP with an impressive limit of detection (LOD) of 0.83 ng/mL. It is believed that the stable and sensitive InP QD fluorescent probes will drive the rapid development of future eco-friendly, cost-effective, and sensitive in vitro diagnostic kits.


Assuntos
Nanoestruturas , Pontos Quânticos , Biotina , Estreptavidina , Corantes Fluorescentes , Ligas
15.
Sci Rep ; 14(1): 882, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195620

RESUMO

Molecular interactions are contingent upon the system's dimensionality. Notably, comprehending the impact of dimensionality on protein-protein interactions holds paramount importance in foreseeing protein behaviour across diverse scenarios, encompassing both solution and membrane environments. Here, we unravel interactions among membrane proteins across various dimensionalities by quantifying their binding rates through fluorescence recovery experiments. Our findings are presented through the examination of two protein systems: streptavidin-biotin and a protein complex constituting a bacterial efflux pump. We present here an original approach for gauging a two-dimensional binding constant between membrane proteins embedded in two opposite membranes. The quotient of protein binding rates in solution and on the membrane represents a metric denoting the exploration distance of the interacting sites-a novel interpretation.


Assuntos
Biotina , Proteínas de Membrana , Fluorescência , Cinética , Estreptavidina
16.
Chem Commun (Camb) ; 60(14): 1944-1947, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38277163

RESUMO

Herein, we report on an artificial nickel chlorinase (ANCase) resulting from anchoring a biotinylated nickel-based cofactor within streptavidin (Sav). The resulting ANCase was efficient for the chlorination of diverse C(sp3)-H bonds. Guided by the X-ray analysis of the ANCase, the activity of the artificial chlorinase could be significantly improved. This approach opens interesting perspectives for late-stage functionalization of organic intermediates as it complements biocatalytic chlorination strategies.


Assuntos
Biotina , Níquel , Biotina/química , Estreptavidina/química
17.
Mol Pain ; 20: 17448069241230419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38246917

RESUMO

In vivo analysis of protein function in nociceptor subpopulations using antisense oligonucleotides and short interfering RNAs is limited by their non-selective cellular uptake. To address the need for selective transfection methods, we covalently linked isolectin B4 (IB4) to streptavidin and analyzed whether it could be used to study protein function in IB4(+)-nociceptors. Rats treated intrathecally with IB4-conjugated streptavidin complexed with biotinylated antisense oligonucleotides for protein kinase C epsilon (PKCε) mRNA were found to have: (a) less PKCε in dorsal root ganglia (DRG), (b) reduced PKCε expression in IB4(+) but not IB4(-) DRG neurons, and (c) fewer transcripts of the PKCε gene in the DRG. This knockdown in PKCε expression in IB4(+) DRG neurons is sufficient to reverse hyperalgesic priming, a rodent model of chronic pain that is dependent on PKCε in IB4(+)-nociceptors. These results establish that IB4-streptavidin can be used to study protein function in a defined subpopulation of nociceptive C-fiber afferents.


Assuntos
Lectinas , Nociceptores , Ratos , Animais , Lectinas/metabolismo , Nociceptores/metabolismo , Estreptavidina/metabolismo , Ratos Sprague-Dawley , Fibras Nervosas Amielínicas/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Gânglios Espinais/metabolismo
18.
J Proteome Res ; 23(2): 618-632, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38226771

RESUMO

Cell surface proteins represent an important class of molecules for therapeutic targeting and cellular phenotyping. However, their enrichment and detection via mass spectrometry-based proteomics remains challenging due to low abundance, post-translational modifications, hydrophobic regions, and processing requirements. To improve their identification, we optimized a Cell-Surface Capture (CSC) workflow that incorporates magnetic bead-based processing. Using this approach, we evaluated labeling conditions (biotin tags and catalysts), enrichment specificity (streptavidin beads), missed cleavages (lysis buffers), nonenzymatic deamidation (digestion and deglycosylation buffers), and data acquisition methods (DDA, DIA, and TMT). Our findings support the use of alkoxyamine-PEG4-biotin plus 5-methoxy-anthranilic acid, SDS/urea-based lysis buffers, single-pot solid-phased-enhanced sample-preparation (SP3), and streptavidin magnetic beads for maximal surfaceome coverage. Notably, with semiautomated processing, sample handling was simplified and between ∼600 and 900 cell surface N-glycoproteins were identified from only 25-200 µg of HeLa protein. CSC also revealed significant differences between in vitro monolayer cultures and in vivo tumor xenografts of murine CT26 colon adenocarcinoma samples that may aid in target identification for drug development. Overall, the improved efficiency of the magnetic-based CSC workflow identified both previously reported and novel N-glycosites with less material and high reproducibility that should help advance the field of surfaceomics by providing insight in cellular phenotypes not previously documented.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Animais , Camundongos , Proteômica/métodos , Biotina , Fluxo de Trabalho , Estreptavidina , Reprodutibilidade dos Testes , Glicoproteínas de Membrana , Fenômenos Magnéticos , Proteoma
19.
Int J Biol Macromol ; 261(Pt 1): 129807, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290635

RESUMO

ß-Agarase was biotinylated and immobilized onto streptavidin-conjugated magnetic nanoparticles to provide insights into the effect of immobilization sites on ß-agarase immobilization. Results showed that, compared with free enzyme, the stability of prepared immobilized ß-agarases through amino or carboxyl activation were both significantly improved. However, the amino-activated immobilized ß-agarase showed higher thermostability and catalytic efficiency than the carboxyl-activated immobilized ß-agarase. The relative activity of the former was 65.00 % after incubation at 50 °C for 1 h, which was 1.77-fold higher than that of the latter. Additionally, amino-activated immobilization increased the affinity of the enzyme to the substrate, and its maximum reaction rate (0.68 µmol/min) was superior to that of carboxyl-activated immobilization (0.53 µmol/min). The visualization results showed that the catalytic site of ß-agarase after carboxyl-activated immobilization was more susceptible to the immobilization process, and the orientation of the enzyme may also hinder substrate binding and product release. These results suggest that by pre-selecting appropriate activation sites and enzyme orientation, immobilized enzymes with higher catalytic activity and stability can be obtained, making them more suitable for the application of continuous production.


Assuntos
Biotina , Enzimas Imobilizadas , Estreptavidina , Enzimas Imobilizadas/metabolismo , Glicosídeo Hidrolases/metabolismo , Estabilidade Enzimática
20.
Mol Cell Proteomics ; 23(1): 100689, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043703

RESUMO

Distinction of non-self from self is the major task of the immune system. Immunopeptidomics studies the peptide repertoire presented by the human leukocyte antigen (HLA) protein, usually on tissues. However, HLA peptides are also bound to plasma soluble HLA (sHLA), but little is known about their origin and potential for biomarker discovery in this readily available biofluid. Currently, immunopeptidomics is hampered by complex workflows and limited sensitivity, typically requiring several mL of plasma. Here, we take advantage of recent improvements in the throughput and sensitivity of mass spectrometry (MS)-based proteomics to develop a highly sensitive, automated, and economical workflow for HLA peptide analysis, termed Immunopeptidomics by Biotinylated Antibodies and Streptavidin (IMBAS). IMBAS-MS quantifies more than 5000 HLA class I peptides from only 200 µl of plasma, in just 30 min. Our technology revealed that the plasma immunopeptidome of healthy donors is remarkably stable throughout the year and strongly correlated between individuals with overlapping HLA types. Immunopeptides originating from diverse tissues, including the brain, are proportionately represented. We conclude that sHLAs are a promising avenue for immunology and potentially for precision oncology.


Assuntos
Neoplasias , Humanos , Estreptavidina , Medicina de Precisão , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos HLA , Antígenos de Histocompatibilidade Classe II , Peptídeos/metabolismo , Espectrometria de Massas , Anticorpos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA